\qquad
\qquad
\qquad

Practice Test Chapter 12

Multiple Choice

Your test will also have a blast from the past section with questions over past chapters. There will be no retakes avai lable for the ch 12 test.

1. $\mathrm{H}_{2} \mathrm{O}_{2}$, hydrogen peroxide, naturally breaks down into $\mathrm{H}_{2} \mathrm{O}$ over time. MnO_{2}, manganese dioxide, can be used to lower the energy of activation needed for this reaction to take place and, thus, increase the rate of reaction. What type of substance is MnO_{2} ?
a. an inhibitor
c. a product
b. a catalyst
d. a reactant
\qquad 2. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

This chemical equation represents the combustion of propane. When correctly balanced, the coefficient for water is
a. 2
b. 4
c. 8
d. 16
\qquad 3. How many atoms are contained in 97.6 g of platinum (Pt)?
a. $\quad 5.16 \times 10^{30}$
b. $\quad 3.01 \times 10^{23}$
c. $\quad 1.20 \times 10^{24}$
d. $\quad 1.10 \times 10^{28}$
\qquad 4. How many moles of CH_{4} are contained in 96.0 grams of CH_{4} ?
a. $\quad 16.00$ moles
b. $\quad 12.00$ moles
c. $\quad 6.00$ moles
d. 3.00 moles

$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

In this reaction, how many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are required to completely react with 84 grams of CO ?
a. 64
b. 80
c. 160
d. 1400

$\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$

$2 \mathrm{NH}_{3}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$

\qquad 6.

If 54.0 grams of water are mixed with excess magnesium nitride, then how many grams of ammonia are produced?
a. $\quad 1.00$ grams
b. $\quad 17.0$ grams
c. 51.0 grams
d. 153 grams

$3 \mathrm{CuCl}_{2}+2 \mathrm{Al} \longrightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{Cu}$

A mass of 5.4 grams of aluminum (Al) reacts with an excess of copper (II) chloride $\left(\mathrm{CuCl}_{2}\right)$ in solution, as shown above. What mass of solid copper (Cu) is produced?
a. 28 grams
b. 8.5 grams
c. 38 grams
d. 19 grams
\qquad 8. What is the density of 1 mole of NO_{2} gas at STP?
a. $2.05 \mathrm{~g} / \mathrm{L}$
b. $\quad 1.34 \mathrm{~g} / \mathrm{L}$
c. $\quad 1.03 \mathrm{~g} / \mathrm{L}$
d. $\quad 0.513 \mathrm{~g} / \mathrm{L}$
9. What type of reaction is the reaction below?
$\ldots \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ _ $\mathrm{Fe}+\ldots \mathrm{O}_{2}$
a. Synthesis/Combination
c. Combustion
b. Decomposition
d. Single Replacement
10. What type of reaction is the reaction below?
$\ldots \mathrm{Al}+\ldots \mathrm{CuSO}_{4} \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Cu}$
a. Synthesis/Combination
c. Double Replacement
b. Decomposition
d. Single Replacement
11. Select the set of coefficients that properly balance the equation below.

$$
\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \ldots \mathrm{PbCl}_{2}+\ldots \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

a. $1,2,1,2$
b. $1,2,2,1$
c. $2,1,2,1$
d. $1,2,2,2$
12. The products created from the reactants below would be:
$_\mathrm{NaF}+\ldots \mathrm{AgNO}_{3} \rightarrow$?
a. $\mathrm{NaNO}_{3}, \mathrm{AgF}$
b. $\mathrm{FNO}_{3}, \mathrm{NaAg}$
c. $\mathrm{Na}_{3} \mathrm{~N}, \mathrm{AgF}, \mathrm{O}_{2}$
d. $\mathrm{NaNO}, \mathrm{AgF}, \mathrm{O}_{2}$
13. The products created from the reactants below would be:
$\ldots \mathrm{Mg}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$?
a. Manganese Sulfate and Hydrogen
c. Magnesium Sulfate and Hydrogen Gas Gas
b. Manganese Hydride and Sulfur Tetroxide Gas
d. Magnesium Hydride and Sulfur Tetroxide Gas
14. Which of the following is a correct interpretation of this balanced equation? $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
a. Two molecules of potassium chlorate
c. Two formula units of potassium produce two molecules of potassium chloride and three molecules of oxygen.
chlorite produce two formula units of potassium chloride and three molecules of oxygen.
b. Two formula units of potassium chlorate produce two formula units of potassium chloride and three molecules of oxygen.
d. Two formula units of potassium chlorate produce two formula units of potassium chloride and two molecules of oxygen.
15. This is the Reaction that occurs when an airbag goes off.

$$
2 \mathrm{NaN}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}
$$

If an airbag has 100 grams of sodium azide $\left(\mathrm{NaN}_{3}\right)$, how many liters of nitrogen gas are produced? Assume STP
a. $\quad 67.2 \mathrm{~L}$
b. 22.4 L
c. 51.7 L
d. $\quad 5.8 \mathrm{~L}$
16. $2 \mathrm{CaCO}_{3}+2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaSO}_{4}+2 \mathrm{CO}_{2}$

If the above reaction has a 96.8% yield, how many actual grams of CaSO_{4} are recovered when 5.24 g of SO_{2} are used in the presence of excess CaCO_{3} and O_{2} ?(Hint: Calculate the theoretical yield first)
a. $\quad 10.77 \mathrm{~g} \mathrm{CaSO}_{4}$
b. $\quad 11.13 \mathrm{~g} \mathrm{CaSO} 4$
c. $\quad 10.00 \mathrm{~g} \mathrm{CaSO}_{4}$
d. $\quad 9.36 \mathrm{~g} \mathrm{CaSO}_{4}$
17. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?
a. 11.2 L
b. 22.4 L
c. 33.6 L
d. $\quad 44.8 \mathrm{~L}$
18. Which of these expressions is a correct interpretation of the balanced equation?

$$
2 \mathrm{~S}+3 \mathrm{O}_{2}-->2 \mathrm{SO}_{3}
$$

a. 2 moles of $\mathrm{S}+3$ moles of oxygen --> 2 moles of SO_{3}
b. 2 atoms of $\mathrm{S}+6$ molecules of
c. 2 g of $\mathrm{S}+3 \mathrm{~g}$ of $\mathrm{O}_{2}-->2 \mathrm{~g}$ of SO_{3} oxygen --> 2 molecules of SO_{3}
d. None of the above

Practice Test Chapter 12

Answer Section

MULTIPLE CHOICE

1. ANS: B
2. ANS: B
3. ANS: B
4. ANS: C
5. ANS: C
6. ANS: B
7. ANS: D
8. ANS: A

KEY: density of a gas at STP; molar mass; molar volume
9. ANS: B PTS: 1 STA: За
10. ANS: D PTS: 1 STA: 3a

KEY: Types of Reactions; Single Replacement
11. ANS: A PTS: 1 STA: За
12. ANS: A
13. ANS: C

PTS: 1

KEY: Single Replacement;
14. ANS: C

ST 3
PTS: 1
15. ANS: C

ST 3
PTS: 1
16. ANS: A

ST. 3
PTS: 1
17. ANS: C

ST 3
PTS: 1
18. ANS: A

PTS: 1

STA: 8c
STA: 3d
STA: 3d
STA: 3e
STA: 3e
STA: 3e
STA: 3d

STA: 3a
STA: 3a

KEY: Mass to Representative Particles
KEY: Mass to Moles

KEY: Types of Reactions; Decomposition

KEY: Balancing Equations
KEY: Predicting Products
TOP: Predicting Products by Name

