Name:		Class:		Date:	ID: A					
Practice	e Test Chapter 12									
Multiple Your test for the ch	will also have a blast f	rom the past section wit	h questi	ons over past chapters. Then	re will be no retakes available					
1	to lower the energy What type of substa	of activation needed for	this rea	ction to take place and, thus,	nganese dioxide, can be used increase the rate of reaction.					
	a. an inhibitorb. a catalyst		c. d.	a product a reactant						
	•	\longrightarrow CO ₂ + H ₂ O								
2			ustion c	of propane. When correctly be	alanced the coefficient for					
	water is	ion represents the como	ustion C	or propane. When correctly be	aranced, the coefficient for					
	a. 2		c.	•						
2	b. 4	1: 07.6		16						
3.	a. 5.16×10^{30}	re contained in 97.6 g of	•	m (Pt)? 1.20×10^{24}						
	b. 3.01×10^{23}		d.	1.10×10^{28}						
4	. How many moles of	f CH4 are contained in 96	5.0 gran	ns of CH ₄ ?						
	a. 16.00 moles		c.	6.00 moles						
	b. 12.00 moles		d.	3.00 moles						
_	$Fe_2O_3 + 30$	CO → 2Fe +	3CO	2						
5		w many grams of Fe ₂ O ₃ a	re requi	red to completely react with	84 grams of CO?					
	a. 64	, , , , , , , , , , , , , , , , , , ,	c.	160	- 6 · · · · · · · · · · · · · · · · · ·					
	b. 80		d.	1400						
	$Mg_3N_2(s) +$	6H ₂ O(I) →								
	2NH ₂ /	(aq) + 3Mg(OH) ₂ ((c)							
6		aq) + Swig(Off)2(3)							
	produced?	ter are mixed with exces		esium nitride, then how many	grams of ammonia are					
	a. 1.00 grams			51.0 grams						
	b. 17.0 grams			153 grams						
7	7. 3CuCl ₂ + 2Al → 2AlCl ₃ + 3Cu									
	shown above. What	A mass of 5.4 grams of aluminum (Al) reacts with an excess of copper (II) chloride (CuCl ₂) in solution, as shown above. What mass of solid copper (Cu) is produced?								
	a. 28 gramsb. 8.5 grams		c. d.	38 grams 19 grams						
8	•	of 1 mole of NO ₂ gas at		1) grains						
	a. 2.05 g/L	or rimore or 1102 gas at	C.	1.03 g/L						
	b. 1.34 g/L		d.	0.513 g/L						

9. What type of reaction is the reaction below?

$$_$$
 Fe₂O₃ \rightarrow $_$ Fe + $_$ O₂

a. Synthesis/Combination

c. Combustion

b. Decomposition

d. Single Replacement

10. What type of reaction is the reaction below?

$$_$$
 Al + $_$ CuSO₄ \rightarrow $_$ Al₂(SO₄)₃ + $_$ Cu

a. Synthesis/Combination

c. Double Replacement

b. Decomposition

d. Single Replacement

11. Select the set of coefficients that properly balance the equation below.

$$_$$
 Pb(NO₃)₂ + $_$ NH₄Cl \rightarrow $_$ PbCl₂ + $_$ NH₄NO₃

a. 1, 2, 1, 2

c. 2, 1, 2, 1

b. 1, 2, 2, 1

d. 1, 2, 2, 2

12. The products created from the reactants below would be:

$$_$$
 NaF + $_$ AgNO₃ \rightarrow ?

a. NaNO₃, AgF

c. Na₃N, AgF, O₂

b. FNO₃, NaAg

d. NaNO, AgF, O₂

13. The products created from the reactants below would be:

$$\underline{\hspace{0.5cm}}$$
 Mg + $\underline{\hspace{0.5cm}}$ H₂SO₄ \rightarrow ?

- a. Manganese Sulfate and Hydrogen Gas
- b. Manganese Hydride and Sulfur Tetroxide Gas
- c. Magnesium Sulfate and Hydrogen Gas
- d. Magnesium Hydride and Sulfur Tetroxide Gas

14. Which of the following is a correct interpretation of this balanced equation?

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

- a. Two molecules of potassium chlorate c. produce two molecules of potassium chloride and three molecules of oxygen.
- b. Two formula units of potassium chlorate produce two formula units of potassium chloride and three molecules of oxygen.
- c. Two formula units of potassium chlorite produce two formula units of potassium chloride and three molecules of oxygen.
- d. Two formula units of potassium chlorate produce two formula units of potassium chloride and two molecules of oxygen.

15. This is the Reaction that occurs when an airbag goes off.

$$2 \text{ NaN}_{3(s)} \rightarrow 2 \text{Na}_{(s)} + 3 \text{ N}_{2(g)}$$

If an airbag has 100 grams of sodium azide (NaN₃), how many liters of nitrogen gas are produced? Assume STP

a. 67.2L

c. 51.7L

b. 22.4L

d. 5.8L

____ 16. $2CaCO_3 + 2SO_2 + O_2 \rightarrow 2CaSO_4 + 2CO_2$

If the above reaction has a 96.8% yield, how many actual grams of $CaSO_4$ are recovered when 5.24g of SO_2 are used in the presence of excess $CaCO_3$ and O_2 ?(Hint: Calculate the theoretical yield first)

a. 10.77g CaSO₄

c. 10.00 g CaSO₄

b. 11.13 g CaSO₄

d. 9.36 g CaSO₄

17. Mg +
$$2 \text{ HCl} \rightarrow \text{MgCl}_2 + \text{H}_2$$

At STP, what is the total number of liters of hydrogen gas produced when 3.00 moles of hydrochloric acid solution is completely consumed?

a. 11.2L

c. 33.6 L

b. 22.4 L

- d. 44.8 L
- 18. Which of these expressions is a correct interpretation of the balanced equation?

$$2S + 3 O_2 --> 2 SO_3$$

- a. 2 moles of S + 3 moles of oxygen --> 2 moles of SO₃
- c. $2 g \text{ of } S + 3 g \text{ of } O_2 \longrightarrow 2 g \text{ of } SO_3$
- b. 2 atoms of S + 6 molecules of oxygen --> 2 molecules of SO₃
- d. None of the above

Practice Test Chapter 12 Answer Section

MULTIPLE CHOICE

1.	ANS:	В	PTS:	1	STA:	8c				
2.	ANS:	В	PTS:	1						
3.	ANS:	В	PTS:	1	STA:	3d	KEY:	Mass to Representative Particles		
4.	ANS:	C	PTS:	1	STA:	3d	KEY:	Mass to Moles		
5.	ANS:	C	PTS:	1	STA:	3e				
6.	ANS:	В	PTS:	1	STA:	3e				
7.	ANS:	D	PTS:	1	STA:	3e				
8.	ANS:	A	PTS:	1	STA:	3d				
	KEY:	density of a gas at STP; molar mass; molar volume								
9.	ANS:	В	PTS:	1	STA:	3a	KEY:	Types of Reactions; Decomposition		
10.	ANS:		PTS:		STA:	3a				
		Types of Reactions; Single Replacement								
11.	ANS:		PTS:		STA:	3a	KEY:	Balancing Equations		
12.			PTS:		STA:			Predicting Products		
13.	ANS:		PTS:	1	STA:	3a	TOP:	Predicting Products by Name		
		Single Replac	ement;							
14.	ANS:	C								
	ST 3									
	PTS:	1								
15	ANS:									
13.	ST 3	C								
	313									
	PTS:	1								
16.	ANS:									
	ST. 3									
	PTS:	1								
17.	ANS:	C								
	ST 3									
	D									
10	PTS:		D							
18.	ANS:	A	PTS:	1						